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Introduction: 

 Mathematical induction is a method of mathematical proof typically used to 

establish that a given statement is true for all natural numbers (positive integers). It is 

done by proving that the first statement in the infinite sequence of statements is true, and 

then proving that if any one statement in the infinite sequence of statements is true, then 

so is the next one 

 The method can be extended to prove statements about more general well-founded 

structures, such as trees; this generalization, known as structural induction, is used in 

mathematical logic and computer science. Mathematical induction in this extended sense 

is closely related to recursion. 

 Mathematical induction should not be misconstrued as a form of inductive 

reasoning, which is considered non-rigorous in mathematics. In fact, mathematical 

induction is a form of rigorous deductive reasoning.  

 None of these ancient mathematicians, however, explicitly stated the inductive 

hypothesis. Another similar case was that of Francesco Maurolico in his Arithmeticorum 

libri duo (1575), is used the technique to prove that the sum of the first n odd integers is 

n
2
. The first explicit formulation of the principle of induction was given by Pascal in his 

Traité du triangle arithmétique (1665). Another Frenchman, Fermat, made ample use of a 

related principle, indirect proof by infinite descent. The inductive hypothesis was also 

employed by the Swiss Jakob Bernoulli, and from then on it became more or less well 

known. The modern rigorous and systematic treatment of the principle came only in the 

19th century, with George Boole, Augustus de Morgan, Charles Sanders Peirce, Giuseppe 

Peano, and Richard Dedekind.  

 “Mathematical induction" is unfortunately named, for it is unambiguously a form 

of deduction. However, it has certain similarities to induction which very likely inspired 

its name. It is like induction in that it generalizes to a whole class from a smaller sample. 

In fact, the sample is usually a sample of one, and the class is usually infinite. 

Mathematical induction is deductive, however, because the sample plus a rule about the 

unexamined cases actually gives us information about every member of the class. Hence 

the conclusion of a mathematical induction does not contain more information than was 

latent in the premises. Mathematical inductions therefore conclude with deductive 

certainty.  

 Mathematical induction is used frequently in discrete math and computer science. 

Many quantities that we are interested in measuring, such as running time, space, or 

output of a program, typically are restricted to positive integers, and thus mathematical 

induction is a natural way to prove facts about these quantities. 

 An analogy of mathematical induction is the game of dominoes. Suppose the 

dominoes are lined up properly,  so that when one falls the successive one will also fall, 
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Now one by pushing the first domino, the second will fall; when the second will fall; the 

third will fall; and so on. We can see that all dominoes will ultimately fall.  

Objective  

� Learn about Mathematical inductions 

� Learn about recurrence relations 

� Learn the relationship between sequences and recurrence relations 

� Explore how to solve recurrence relations by iteration 

 

Basic Introduction: 

SEQUENCE: 

A sequence is just a list of elements usually written in a row. 

EXAMPLES: 

1. 1, 2, 3, 4, 5, … 

2. 1, 1/2, 1/3, 1/4, 1/5, … 

3. 1, -1, 1, -1, 1, -1, … 

FORMAL DEFINITION: 

A sequence is a function whose domain is the set of integers greater than or equal to a particular 

integer
0n .   Usually this set is the set of Natural numbers {1, 2, 3, …} or the set of whole numbers 

{0, 1, 2, 3, …}. 

NOTATION: 

We use the notation an to denote the image of the integer n, and call it a term of the sequence. 

Thus 

  a1, a2, a3, a4 …, an, … 

represent  the terms of a sequence defined on the set of natural numbers N.  

Note that a sequence is described by listing the terms of the sequence in order of increasing 

subscripts. 

FINDING TERMS OF A SEQUENCE GIVEN BY AN EXPLICIT FORMULA: 
An explicit formula or general formula for a sequence is a rule that shows how the values of ak 

depends on k. 

EXAMPLE: 

Define a sequence a1, a2, a3, … by the explicit formula 
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The first four terms of the sequence are: 

 

 

 

EXAMPLE: 

Write the first four terms of the sequence defined by the formula 

 bj = 1 + 2
j
, for all integers j ≥ 0 

SOLUTION: 

b0 = 1 + 2
0
 = 1 + 1 = 2 

b1 = 1 + 2
1
 = 1 + 2 = 3 

b2 = 1 + 2
2
 = 1 + 4 = 5 

b3 = 1 + 23 = 1 + 8 = 9 

EXERCISE: 

Compute the first six terms of the sequence defined by the formula     Cn = 1+ (-1) n for all 

integers n ≥ 0 

SOLUTION : 

C0 = 1 + (-1)
 0
= 1 + 1 = 2  C1 = 1 + (-1)

1
 = 1 + (-1) = 0 

C2 = 1 + (-1)
2
 = 1 + 1 = 2  C3 = 1 + (-1)

3
 = 1 + (-1) = 0 

C4 = 1 + (-1)
4
 = 1 + 1 = 2  C5 = 1 + (-1)

5
 = 1 + (-1) = 0 

 

EXAMPLE: 

Write the first four terms of the sequence defined by 

 

 

SOLUTION:  

 

 

for all integers 1
1

k

k
a k

k
= ≥

+

1 2 3

4

1 1 2 2 3 3
, ,

1 1 2 2 1 3 3 1 4

4 4

4 1 5

a a a

and fourth term is a

= = = = = =
+ + +

= =
+

( 1)
for all integers 1

1

n

n

n
C n

n

−
= ≥

+

1 2 3

1 2 3

4

4

( 1) (1) 1 ( 1) (2) 2 ( 1) (3) 3
, ,

1 1 2 2 1 3 3 1 4

( 1) (4) 4

4 1 5

C C C

And fourth term isC

− − − − −
= = = = = =

+ + +

−
= =

+
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Note : A sequence whose terms alternate in sign is called an alternating sequence. 

EXERCISES: 

Find explicit formulas for sequences with the initial terms given: 

1. 0, 1, -2, 3, -4, 5, … 

SOLUTION: an = (-1)
 n+1

n for all integers n ≥ 0 

 

 

2.  

SOLUTION: 

 

3. 2, 6, 12, 20, 30, 42, 56, … 

SOLUTION: Cn = n (n + 1) for all integers n ≥ 1 

 

4. 1/4, 2/9, 3/16, 4/25, 5/36, 6/49, … 

SOLUTION: 

 

 

OR 

 

 

ARITHMETIC SEQUENCE: 

A sequence in which every term after the first is obtained from the preceding term by adding a 

constant number is called an arithmetic sequence or arithmetic progression (A.P.) 

The constant number, being the difference of any two consecutive terms is called the common 

difference of A.P., commonly denoted by “d”. 

 

EXAMPLES: 

1. 5, 9, 13, 17, …  (common difference = 4) 

2. 0, -5, -10, -15, …  (common difference = -5) 

1 1 1 1 1 1 1
1 , , , ,

2 2 3 3 4 4 5
− − − − L

1 1
for all integers 1

1
kb n

k k
= − ≥

+

2
for all integers   1

( 1)
i

i
d i

i
= ≥

+

2

1
for all integers   0

( 2)
j

j
d j

j

+
= ≥

+
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3. x + a, x + 3a, x + 5a, … (common difference = 2a) 

GENERAL TERM OF AN ARITHMETIC SEQUENCE: 
Let a be the first term and d be the common difference of an arithmetic sequence. Then the 

sequence is    a, a+d, a+2d, a+3d, … 

If ai, for i ≥ 1, represents the terms of the sequence then an = nth term = a + (n - 1)d for all integers 

n  ≥1. 

EXAMPLE: Find the 20th term of the arithmetic sequence    3, 9, 15, 21, … 

SOLUTION: 

 Here a = first term = 3 

 d = common difference = 9 - 3 = 6 

 n = term number = 20 

 a20 = value of 20th term = ? 

Since an = a + (n - 1) d; n ≥1 

∴       a20 = 3 + (20 - 1) 6 

     = 3 + 114 

     = 117  

GEOMETRIC SEQUENCE: 

A sequence in which every term after the first is obtained from the preceding term by multiplying 

it with a constant number is called a geometric sequence or geometric progression (G.P.) 

The constant number, being the ratio of any two consecutive terms is called the common ratio of 

the G.P. commonly denoted by “r”. 

EXAMPLE: 

1. 1, 2, 4, 8, 16, …  (common ratio = 2) 

2. 3, - 3/2, 3/4, - 3/8, …  (common ratio = - 1/2) 

3. 0.1, 0.01, 0.001, 0.0001, … (common ratio = 0.1 = 1/10) 

GENERAL TERM OF A GEOMETRIC SEQUENCE: 

Let a be the first tem and r be the common ratio of a geometric sequence. Then the sequence is a, 

ar, ar
2
, ar

3
, …  

If ai, for i ≥ 1 represent the terms of the sequence, then 

  an = nth term = arn-1; for all integers n ≥ 1 
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EXAMPLE: 

Write the geometric sequence with positive terms whose second term is 9 and fourth term is 1. 

SOLUTION:  Let a be the first term and r be the common ratio of the geometric sequence. Then 

  an = ar
 n-1

  n ≥1 

Now  a2 = ar
 2-1

 

⇒  9  = ar………………….(1) 

Also  a4 = ar4-1 

  1  = ar 3 …………………(2) 

Dividing (2) by (1), we get, 

 

 

 

 

 

Substituting r = 1/3 in (1), we get 

 

 

 

Hence the geometric sequence is 

 27, 9, 3, 1, 1/3, 1/9, … 

SEQUENCES IN COMPUTER PROGRAMMING: 

An important data type in computer programming consists of finite sequences known as one-

dimensional arrays; a single variable in which a sequence of variables may be stored. 

EXAMPLE: 

The names of k students in a class may be represented by an array of k elements “name” as: 

 name [0], name[1], name[2], …, name[k-1] 

 

SERIES: 

3

2

1

9

1

9

1 1
rejecting 

3 3

ar

ar

r

r r

=

⇒ =

 ⇒ = = − 
 

1
9

3

9 3 27

a

a

 
=  

 
⇒ = × =
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The sum of the terms of a sequence forms a series. If  a1, a2, a3, … represent a sequence of 

numbers, then the corresponding series is  

 

a1 + a2 + a3 + … 

 

SUMMATION NOTATION: 

The capital Greek letter sigma ∑ is used to write a sum in a short hand notation. 

More generally if m and n are integers and m ≤ n, then the summation from k equal m to n of ak is 

 

Here k is called the index of the summation;  m the lower limit of the summation and n the upper 

limit of the summation. 

COMPUTING SUMMATIONS: 

Let a0 = 2, a1 = 3, a2 = -2, a3 = 1 and a4 = 0.Compute each of the summations: 

 

  

 

SOLUTION: 

 

                            = a0 + a1 + a2 + a3 + a4  

                             = 2 + 3 + (-2) + 1 + 0  = 4 

SUMMATION NOTATION TO EXPANDED FORM: 

 

 

 

 

 

 

1 2

n

k m m m n

k m

a a a a a
+ +

=

= + + + +∑ L

4

0

1. i

i

a
=

∑

0

( 1)

1

in

i i=

−

+
∑ 1 1 1 ( 1)

1
2 3 4 1

n

n

−
= − + − + +

+
L

1

k

k

a
∞

=

∑= 

4

0

i

i

a
=

∑
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EXPANDED FORM TO SUMMATION NOTATION: 

Write the following using summation notation: 

 

  

                                  

 

ARITHMETIC SERIES: 

In general, if a is the first term and d the common difference of an arithmetic series, then the 

series is given as:  a + (a+d) + (a+2d) +… 

SUM OF n TERMS OF AN ARITHMETIC SERIES: 

Let a be the first term and d be the common difference of an arithmetic series. Then its nth term 

is: 

 an = a + (n - 1)d; n ≥ 1 

If Sn denotes the sum of first n terms of the A.S, then          Sn = n(a + an)/2  

                                  Sn = n(a + l)/2         Where                l = an = a + (n - 1)d 

Therefore  

                                                            Sn = n/2 [2 a + (n - 1) d 

 

GEOMETRIC SERIES: 

If a is the first term and r the common ratio of a geometric series, then the series is given as: a + 

ar + ar2 + ar3 + … 

SUM OF n TERMS OF A GEOMETRIC SERIES: 

Let a be the first term and r be the common ratio of a geometric series. Then its nth term is: 

 an = ar
n-1

; n ≥ 1 

 

 

 

1 2 3 1

1 2 2

n

n n n n

+
+ + + +

+ +
L

(1 )
( 1)

1

n

n

a r
S r

r

−
⇒ = ≠

−
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INFINITE GEOMETRIC SERIES: 

Consider the infinite geometric series 

 a + ar + ar
2

 + … + ar
n-1

 + … 

then 

 

 

If S
n
 → S as n → ∞, then the series is convergent and S is its sum. 

If |r| < 1, then rn → 0 as n → ∞ 

 

 

 

 

If S
n
 increases indefinitely as n becomes very large then the series is said to be divergent. 

 

IMPORTANT SUMS: 

 

 

 

 

 

1

2 2 2 2 2

1

22
3 3 3 3 3

1

( 1)
1. 1 2 3

2

( 1)(2 1)
2. 1 2 3

6

( 1) ( 1)
3. 1 2 3   

4 2

n

k

n

k

n

k

n n
n k

n n n
n k

n n n n
n k

=

=

=

+
+ + + + = =

+ +
+ + + + = =

+ + 
+ + + + = = =   

∑

∑

∑

L

L

L

2 1 (1 )
( 1)

1

n
n

n

a r
S a ar ar ar r

r

− −
= + + + + = ≠

−
L

(1 )
lim lim

1

   
1

n

n
n n

a r
S S

r

a

r

→∞ →∞

−
∴ = =

−

=
−
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Recursion is a principle closely related to mathematical induction. In a recursive 

definition, an object is defined in terms of itself. We can recursively define sequences, 

functions and sets. 

Example: 

The sequence {an} of powers of 2 is given by   an = 2
n
 for n = 0, 1, 2, … .  

The same sequence can also be defined recursively: a0 = 1 

an+1 = 2an     for n = 0, 1, 2, … 

Obviously, induction and recursion are similar principles. 

We can use the following method to define a function with the natural numbers as its 

domain: 

1.   Specify the value of the function at zero. 

2.   Give a rule for finding its value at any integer from its values at smaller integers. 

Such a definition is called recursive or inductive definition.  

How can we recursively define the factorial function f(n) = n! ?  

f(0) = 1 

f(n + 1) = (n + 1)f(n)  

f(0) = 1 

f(1) = 1f(0) = 1⋅1 = 1 

f(2) = 2f(1) = 2⋅1 = 2 

f(3) = 3f(2) = 3⋅2 = 6 

f(4) = 4f(3) = 4⋅6 = 24 

If we want to recursively define a set, we need to provide two things: 

•   an initial set of elements, 

•   rules for the construction of additional  elements from elements in the set. 

Example: Let S be recursively defined by: 3 ∈ S,   (x + y) ∈ S if (x ∈ S) and (y ∈ S)  

S is the set of positive integers divisible by 3. 

Let P(n) be the statement “3n belongs to S”. 

Basis step: P(1) is true, because 3 is in S. 
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Inductive step: To show: If P(n) is true, then P(n + 1) is true. 

Assume 3n is in S. Since 3n is in S and 3 is in S, it follows from the recursive definition 

of S that 

3n + 3 = 3(n + 1) is also in S. 

 
First of all instead of giving the definition of Recursion we give you an example, you already 

know the Set of Odd numbers Here we give the new definition of the same set that is the set of 

Odd numbers. 

Definition for odd positive integers may be given as: 

BASE: 

            1 is an odd positive integer. 

RECURSION: 

  If k is an odd positive integer, then k + 2 is an odd positive integer. 

Now, 1 is an odd positive integer by the definition base. 

With k = 1, 1 + 2 = 3, so 3 is an odd positive integer. 

With k = 3, 3 + 2 = 5, so 5 is an odd positive integer 

and so, 7, 9, 11, … are odd positive integers. 

REMARK: Recursive definitions can be used in a “generative” manner. 

RECURSION: 

The process of defining an object in terms of smaller versions of itself is called recursion. 

A recursive definition has two parts: 

1.BASE: 

 An initial simple definition which cannot be expressed in terms of smaller versions of 

itself. 

2. RECURSION: 

 The part of definition which can be expressed in terms of  smaller versions of itself. 
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RECURSIVELY DEFINED FUNCTIONS: 

A function is said to be recursively defined if the function refers to itself such that  

1. There are certain arguments, called base values, for which the function does not refer to itself. 

2. Each time the function does refer to itself, the argument of the function must be closer to a base 

value. 

EXAMPLE: 

Suppose that f is defined recursively by 

   f(0) = 3 

  f(n + 1) = 2 f (n) + 3 

Find f(1), f(2), f(3) and f(4) 

SOLUTION: 

          From the recursive definition it follows that 

           f(1) = 2 f(0) + 3 = 2(3) + 3 = 6 + 3 = 9 

In evaluating of f(1) we use the formula given in the example and we note that it involves f(0) and 

we are also given the value of that which we use to find out the functional value at 1. Similarly we 

will use the preceding value  

In evaluating the next values of the functions as we did below.  

           f(2) = 2 f(1) + 3 = 2(9) + 3 = 18 + 3 = 21 

           f(3) = 2 f(2) + 3 = 2(21) + 3 = 42 + 3 = 45 

           f(4) = 2 f(3) + 3 = 2(45) + 3 = 90 + 3 = 93 

 

EXERCISE: 

Find f(2), f(3), and f(4) if f is defined recursively by           

  f(0) = -1, f(1)=2 and for n = 1, 2, 3, … 

  f(n+1) = f(n) + 3 f(n - 1)  

SOLUTION: 

          From the recursive definition it follows that 

  f(2)   = f(1) + 3 f (1-1) 

           = f(1) + 3 f (0) 

                    = 2 + 3 (-1)       = -1 
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Now in order to find out the other values we will need the values of the preceding .So we write 

these values here again 

           f(0) = -1, f(1)=2        f(n+1) = f(n) + 3 f(n - 1)  

           f(2) = -1 

By recursive formula we have 

                     f(3) = f(2) + 3 f (2-1) 

                           = f(2) + 3 f (1) 

                           = (-1) + 3 (2)  

                = 5 

                   f(4)  = f(3) + 3 f (3-1) 

                          = f(2) + 3 f (2) 

                          = 5 + 3 (-1)  

                          = 2 

THE FACTORIAL OF A POSITIVE INTEGER: 

For each positive integer n, the factorial of n denoted n! is defined to be the product of all the 

integers from 1 to n: 

  n! = n·(n - 1)·(n - 2) ·  ·  ·  3 · 2 ·  1 

Zero factorial is defined to be 1   

                           0! = 1 

In general,  

  n! = n(n-1)!  for each positive integer n. 

THE FACTORIAL FUNCTION DEFINED RECURSIVELY: 

We can define the factorial function F(n) = n! recursively by specifying the initial value of this 

function, namely, F(0) = 1, and giving a rule for finding F(n) from F(n-1).{(n! = n(n-1)!} 

Thus, the recursive definition of factorial function F(n) is: 

1.  F(0) = 1 

2.  F(n) = n F(n-1) 

 

EXERCISE: 
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Let S be the function such that S(n) is the sum of the first n positive integers. Give a recursive 

definition of S(n). 

SOLUTION: 

The initial value of this function may be specified as S(0) = 0 

Since  

  S(n) = n + (n - 1) + (n - 2) + … + 3 + 2 + 1 

          = n + [(n - 1) + (n - 2) + … + 3 + 2 + 1] 

          = n + S(n-1) 

which defines the recursive step. 

Accordingly S may be defined as: 

1.  S(0)= 0   

2.  S(n) = n + S(n - 1)  for n ≥ 1 

EXERCISE: 

Let a and b denote positive integers. Suppose a function Q is defined recursively as follows: 

(a) Find the value of Q(2,3) and Q(14,3) 

(b) What does this function do? Find Q (3355, 7) 

SOLUTION: 

 

 

 

(a) Q (2,3) = 0  since 2 < 3 

            Given Q(a,b) = Q(a-b,b) + 1 if b ≤a 

Now  

 Q (14, 3) = Q (11,3) + 1 

   = [Q(8,3) + 1] + 1 = Q(8,3) + 2 

   = [Q(5,3) + 1] + 2 = Q(5,3) + 3 

   = [Q(2,3) + 1] + 3 = Q(2,3) + 4 

   = 0 + 4  (∴ Q(2,3) = 0) 

   = 4 

0 if 
( , )

( , ) 1 if  

a b
Q a b

Q a b b b a

〈
= 

− + ≤



 

                                                   17 

Property of Integers 

  10 CS34                                                 Dr. V. Lokesha  2012 

(b) 

 

 

Each time b is subtracted from a, the value of Q is increased by 1. Hence Q(a,b) finds the integer 

quotient when a is divided by b. 

Thus Q(3355, 7) = 479 

THE FIBONACCI SEQUENCE: 

The Fibonacci sequence is defined as follows. 

F
0
 = 1, F

1
 = 1 

F
k
 = F

k-1
 + F

k-2
  for all integers k ≥ 2 

             F
2
 = F

1
 + F

0
 = 1 + 1 = 2 

 F
3
 = F

2
 + F

1
 = 2 + 1 = 3 

 F
4
 = F

3
 + F

2
 = 3 + 2 = 5 

 F
5
 = F

4
 + F

3
 = 5 + 3 = 8 

       . 

        

                   RECURRENCE RELATION: 

A recurrence relation for a sequence a
0
, a

1
, a

2
, . . . , is a formula that relates each term a

k
 to certain 

of its predecessors a
k-1

, a
k-2

, . . . , a
k-i

 ,  

where i is a fixed integer and k is any integer greater than or equal to i. The initial conditions for 

such a recurrence relation specify the values of  

a
0
, a

1
, a

2
, . . . , a

i-1
. 

EXERCISE: 

Find the first four terms of the following recursively defined sequence. 

 b
1
 = 2 

 b
k
 = b

k-1
 + 2 ·  k,  for all integers k ≥ 2 

SOLUTION: 

 b
1
 = 2  (given in base step) 

 b
2
 = b

1
 + 2 ·  2 = 2 + 4 = 6 

 b
3
 = b

2
 + 2 ·  3 = 6 + 6 = 12 

 b
4
 = b

3
 + 2 ·  4 = 12 + 8 = 20 

 

0 if 
( , )

( , ) 1 if 

a b
Q a b

Q a b b b a

〈
= 

− + ≤
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EXERCISE: 

Find the first five terms of the following recursively defined sequence. 

  t
0
 =  – 1, t

1
 = 1 

  t
k
 = t

k-1
 + 2 ·  t

k-2
,  for all integers k ≥ 2 

SOLUTION: 

 t
0
 =  – 1,  (given in base step) 

 t
1
 = 1  (given in base step) 

 t
2
 = t

1
 + 2 ·  t

0
 =   1 + 2 ·  (–1) = 1 – 2    = –1 

 t
3
 = t

2
 + 2 ·  t

1
 = –1 + 2 ·  1      = –1 + 2 = 1 

 t
4
 = t3 + 2 ·  t

2
 =   1 + 2 ·  (–1) = 1 – 2    = –1  

EXERCISE: 

Define a sequence b
0
, b

1
, b

2
, . . . by the formula  

  bn = 5
 n ,    for all integers n ≥ 0.  

Show that this sequence satisfies the recurrence relation b
k
 = 5b

k – 1, for all integers  k ≥ 1. 

SOLUTION: 

The sequence is given by the formula 

   bn = 5
 n

 

Substituting k for n we get 

   b
k
 = 5

k

 . . . . . (1) 

Substituting k – 1 for n we get 

   b
k-1

 = 5
 k-1

 . . . . . (2) 

Multiplying both sides of (2) by 5 we obtain 

  5 ·  b
k-1

 = 5 ·  5
k – 1  

                = 5
k

  =  b
k
   using (1) 

Hence  b
k
 = 5b

k-1
  as required 
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EXERCISE: 

Show that the sequence 0, 1, 3, 7, . . . , 2
 n
 – 1, . . . , for n ≥ 0, satisfies the recurrence relation 

  d
k
 = 3d

k-1
 – 2d

k-2
, for all integers k ≥ 2 

SOLUTION: 

The sequence is given by the formula 

   d
n
 = 2

 n

 – 1  for n ≥ 0 

Substituting k – 1 for n we get   d
k-1

 = 2
k-1

 – 1 

Substituting k – 2 for n we get  d
k-2

 = 2
k-2

 – 1 

We want to prove that  

  d
k
 = 3d

k-1
 – 2d

k-2
 

                 R.H.S. = 3(2
k
 – 1 – 1) – 2(2

k
 – 2 – 1) 

       = 3 ·  2
k – 1 – 3 – 2 ·  2

k – 2 + 2 

       = 3 ·  2
k
 – 1 – 2

k
 – 1 – 1 

       = (3 – 1) ·  2
k – 1 – 1 

       = 2 ·  2
k
 – 1

 – 1 =  2
k
 
 – 1 = d

k     = L.H.S. 

THE TOWER OF HANOI: 

The puzzle was invented by a French Mathematician Adouard Lucas in 1883. It is well known to 

students of Computer Science since it appears in virtually any introductory text on data structures 

or algorithms. 

There are three poles on first of which are stacked a number of disks that decrease in size as they 

rise from the base. The goal is to transfer all the disks one by one from the first pole to one of the 

others, but they must never place a larger disk on top of a smaller one. 

Let mn be the minimum number of moves needed to move a tower of n disks from one pole to 

another. Then mn can be obtained recursively as follows. 

• m
1
 = 1 

• m
k
 = 2 m

k-1
 + 1 

m
2
 = 2 ·  m

1
 + 1 = 2 ·  1 + 1 = 3  

m
3
 = 2 ·  m

2
 + 1 = 2 ·  3 + 1 = 7  

m
4
 = 2 ·  m

3
 + 1 = 2 ·  7 + 1 = 15  
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m
5
 = 2 ·  m

4
 + 1 = 2 ·  15 + 1 = 31  

m
6
 = 2 ·  m

5
 + 1 = 2 ·  31 + 1 = 65 

 Note that 

             m
n
 = 2

n

 – 1 

  m
64

 = 2
64

 – 1     ≅ 584.5 billion years 

USE OF RECURSION: 

At first recursion may seem hard or impossible, may be magical at best.  However, recursion 

often provides elegant, short algorithmic solutions to many problems in computer science and 

mathematics. 

Examples where recursion is often used  

• math functions  

• number sequences  

• data structure definitions  

• data structure manipulations  

• language definitions  
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PRINCIPLE OF MATHEMATICAL INDUCTION: 
Let P(n) be a propositional function defined for all positive integers n. P(n) is true for every 

positive integer n if 

1.Basis Step:  

          The proposition P(1) is true. 

2.Inductive Step:  

          If P(k) is true then P(k + 1) is true for all integers k ≥ 1. 

  i.e. ∀ k  p(k) → P(k + 1) 

EXAMPLE: 

         Use Mathematical Induction to prove that 

  

                                                      for all integers n ≥1 

SOLUTION: 

                      Let 

 

1.Basis Step: 

                 P(1) is true. 

For n = 1, left hand side of P(1) is the sum of all the successive integers starting at 1 and ending at 

1, so LHS = 1 and RHS  is  

 

                                                           

 

so the proposition is true for n = 1. 

        

2. Inductive Step:  Suppose P(k) is true for, some integers k ≥ 1. 

 

(1) 

 

( 1)
1 2 3

2

n n
n

+
+ + + + =L

( 1)
( ) :1 2 3

2

n n
P n n

+
+ + + + =L

1(1 1) 2
. . 1

2 2
R H S

+
= = =

( 1)
1 2 3

2

k k
k

+
+ + + + =L
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To prove P(k + 1) is true. That is, 

 

          (2) 

 

Consider L.H.S. of (2) 

 

 

 

 

 

 

 

Hence by principle of Mathematical Induction the given result true for all integers greater or equal 

to 1. 

EXERCISE: 

                      Use mathematical induction to prove that 

                      1+3+5+…+(2n -1) = n2 for all integers n ≥1. 

SOLUTION: 

                      Let P(n) be the equation 1+3+5+…+(2n -1) = n2 

 

1. Basis Step:    

                         P(1) is true 

                               For n = 1, L.H.S of P(1) = 1and  

                                                R.H.S =2(1)-1 = 1 

                               Hence the equation is true for n = 1 

      2.  Inductive Step:   

                                Suppose P(k) is true for some integer k ≥ 1. That is, 

  1 + 3 + 5 + … + (2k - 1) = k
2
 …………………(1) 

( 1)( 2)
1 2 3 ( 1)

2

k k
k

+ +
+ + + + + =L

1 2 3 ( 1) 1 2 3 ( 1)

( 1)
( 1) using (1)

2

( 1) 1
2

2
( 1)

2

( 1)( 2)
RHS of (2)

2

k k k

k k
k

k
k

k
k

k k

+ + + + + = + + + + + +

+
= + +

 
= + +  

+ 
= +   

+ +
= =

L L
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To prove P(k+1) is true; i.e., 

         1 + 3 + 5 + … +[2(k+1)-1] = (k+1)
 2
    ………….……(2) 

 

Consider L.H.S. of (2) 

 

 

 

 

 

Thus P(k+1) is also true. Hence by mathematical induction, the given equation is true for all 

integers n≥1. 

EXERCISE: 

                     Use mathematical induction to prove that  

                     1+2+2
2
 + … + 2

n
 = 2

n+1
 - 1 for all integers n ≥0 

SOLUTION: 

                      Let P(n): 1 + 2 + 2
2
 + … + 2

n
 = 2

n+1
 - 1 

1. Basis Step:   
                         P(0) is true. 

                               For n = 0 

                               L.H.S of P(0) = 1 

                               R.H.S of P(0) = 2
0+1

 - 1 = 2 - 1 = 1 

                               Hence P(0) is true. 

   

 2.   Inductive Step:  

                                Suppose P(k) is true for some integer k ≥ 0; i.e., 

 1+2+22+…+2k = 2k+1 – 1……………………(1) 

To prove P(k+1) is true, i.e., 

   1+2+22+…+2k+1 = 2k+1+1 – 1…………………(2) 

2

2

1 3 5 [2( 1) 1] 1 3 5 (2 1)

1 3 5 (2 1) (2 1)

(2 1) using (1)

( 1)

R.H.S. of (2)

k k

k k

k k

k

+ + + + + − = + + + + +

= + + + + − + +

= + +

= +

=

L L

L
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Consider LHS of equation (2) 

    1+2+2
2
+…+2

k+1
= (1+2+2

2
+…+2

k
) + 2

k+1 

         = (2k+1 - 1) +2k+1 

                      = 2·2k+1 - 1 

          = 2k+1+1 - 1 = R.H.S of (2) 

Hence P(k+1) is true and consequently by mathematical induction the given propositional 

function is true for all integers n≥0. 

EXERCISE: 

                     Prove by mathematical induction 

                                                                                   for all integers n ≥1. 

SOLUTION: 

                       Let P(n) denotes the given equation 

1. Basis step:   
                         P(1) is true 

                               For n = 1 

                               L.H.S of P(1) = 12 = 1 

              

 R.H.S of P(1) 

 

 

So L.H.S = R.H.S of P(1).Hence P(1) is true 

2.Inductive Step:   

                            Suppose P(k) is true for some integer k ≥1;  

 

                                                                                                 ………(1) 

To prove P(k+1) is true; i.e.; 

 

                                                                                                            ………(2) 

2 2 2 2 ( 1)(2 1)
1 2 3

6

n n n
n

+ +
+ + + + =L

2 2 2 2 ( 1)(2 1)
1 2 3

6

k k k
k

+ +
+ + + + =L

2 2 2 2 ( 1)( 1 1)(2( 1) 1)
1 2 3 ( 1)

6

k k k
k

+ + + + +
+ + + + + =L

1(1 1)(2(1) 1)

6

(1)(2)(3) 6
1

6 6

+ +
=

= = =
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             Consider LHS of above equation (2) 

 

                                                          

2

2

2

(2 1) 6( 1)
( 1)

6

2 6 6
( 1)

6

( 1)(2 7 6)

6

( 1)( 2)(2 3)

6

( 1)( 1 1)(2( 1) 1)

6

2 6 6
( 1)

6

k k k
k

k k k
k

k k k

k k k

k k k

k k k
k

+ + + 
= +   

 + + +
= +  

 

+ + +
=

+ + +
=

+ + + + +
=

 + + +
= +  

 

 

                                                          

2
( 1)(2 7 6)

6

( 1)( 2)(2 3)

6

( 1)( 1 1)(2( 1) 1)

6

k k k

k k k

k k k

+ + +
=

+ + +
=

+ + + + +
=

 

EXERCISE: 

                     Prove by mathematical induction 

 

                                                                            for all integers n≥1 

            

SOLUTION: 

                       Let P(n) be the given equation. 

1.Basis Step:                          P(1) is true 

                              For n = 1 

                              L.H.S of P(1) =  

 

                              R.H.S of P(1) = 

1 1 1

1 2 2 3 ( 1) 1

n

n n n
+ + + =

⋅ ⋅ + +
L

1 1 1

1 2 1 2 2
= =

⋅ ×

1 1

1 1 2
=

+

2 2 2 2 2 2 2 2 2

2

1 2 3 ( 1) 1 2 3 ( 1)

( 1)(2 1)
( 1)

6

k k k

k k k
k

+ + + + + = + + + + + +

+ +
= + +

L L
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                           Hence P(1) is true 

      2.Inductive Step:   

                              Suppose P(k) is true, for some integer k≥1. That is 

 

                                                        ……                                                        ……….(1) 

To prove P(k+1) is true. That is 

 

                                                                                                                           ……..(2) 

 

Now we will consider the L.H.S of the equation (2) and will try to get the R.H.S by using 

equation ( 1) and some simple computation. 

Consider LHS of (2) 

 

 

 

 

 

 

 

 

 

 

 

 

Hence P(k+1) is also true and so by Mathematical induction the given equation is true for all 

integers n ≥1. 

 

 

1 1 1

1 2 2 3 ( 1) 1

k

k k k
+ + + =

⋅ ⋅ + +
L

1 1 1 1

1 2 2 3 ( 1)( 1 1) ( 1) 1

k

k k k

+
+ + + =

⋅ ⋅ + + + + +
L

1 1 1

1 2 2 3 ( 1)( 2)

1 1 1 1

1 2 2 3 ( 1) ( 1)( 2)

1

1 ( 1)( 2)

k k

k k k k

k

k k k

+ + +
⋅ ⋅ + +

= + + + +
⋅ ⋅ + + +

= +
+ + +

L

L

2

2

( 2) 1

( 1)( 2)

2 1

( 1)( 2)

( 1)

( 1)( 2)

1

( 2)

RHS of (2)

k k

k k

k k

k k

k

k k

k

k

+ +
=

+ +

+ +
=

+ +

+
=

+ +

+
=

+

=
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EXERCISE: 

                     Use mathematical induction to prove that 

 

                                                      

SOLUTION: 

1.Basis Step:   

                 To prove the formula for n = 0, we need to show that 

 

  

                              Now, L.H.S =  

                                        R.H.S = 0·22 + 2 = 0 + 2 = 2 

                              Hence the formula is true for n = 0 

2.Inductive Step:  

                       Suppose for some integer n=k ≥0 

 ………………(1) 

 

 We must show that 

 

Consider LHS of (2) 

 

 

 

 

 

 

Hence the inductive step is proved as well. Accordingly by mathematical induction the given 

formula is true for all integers n≥0. 

 

1 2

1
2 2 2, for all integers 0

n i n

i
i n n

+ +

=
= ⋅ + ≥∑

0 1 0 2

1
.2 0 2 2i

i
i

+ +

=
= ⋅ +∑

1 1

1
2 (1)2 2i

i
i

=
⋅ = =∑

1 2

1
2 2 2

k i k

i
i k

+ +

=
⋅ = ⋅ +∑

2 1 2

1
2 ( 1) 2 2 ................(2)

ik k

i
i k

+ + +

=
⋅ = + ⋅ +∑

2 1 2

1 1

2 2

2

2

2

1 2

2 2 ( 2) 2

( 2 2) ( 2) 2

( 2)2 2

(2 2) 2 2

( 1)2 2 2

( 1) 2 2

RHS of equation (2)

i ik k k

i i

k k

k

k

k

k

i i k

k k

k k

k

k

k

+ + +

= =

+ +

+

+

+

+ +

⋅ = ⋅ + + ⋅

= ⋅ + + + ⋅

= + + +

= + ⋅ +

= + ⋅ +

= + ⋅ +

=

∑ ∑
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EXERCISE: 

                     Use mathematical induction to prove that  

 

                                                    

                    for all integers n ≥2 

SOLUTION: 

1. Basis Step:   

                        For n = 2 

                              L.H.S   

                             R.H.S 

 

Hence the given formula is true for n = 2 

2. Inductive Step:   

                               Suppose for some integer k ≥2 

 

                                                                                                ………………….(1) 

                                    We must show that 

 

                                                                                                     …………..(2) 

Consider L.H.S of (2) 

 

 

 

  

 

 

 

 

2 2 2

1 1 1 1
1 1 1

2 3 2

n

n n

+     
− ⋅ − − =     

     
L

2

1 1 3
1 1

2 4 4
= − = − =

2 1 3

2(2) 4

+
= =

2 2 2

1 1 1 1
1 1 1

2 3 2

k

k k

+     
− ⋅ − − =     

     
L

2 2 2

1 1 1 ( 1) 1
1 1 1

2 3 ( 1) 2( 1)

k

k k

  + +   
− ⋅ − − =     

+ +     
L

2 2 2

2 2 2 2

2

2

2

2

1 1 1
1 1 1

2 3 ( 1)

1 1 1 1
1 1 1 1

2 3 ( 1)

1 1
1

2 ( 1)

1 ( 1) 1

2 ( 1)

1 2 1 1

2 ( 1)

k

k k

k

k k

k k

k k

k k

k k

    
− ⋅ − −     

+     

       
= − ⋅ − − −         +        

 + 
= −   

+   

 + + − 
=    

+   

 + + − 
=    

+   

L

L
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Hence by mathematical induction the given equation is true 

EXERCISE:                   Prove by mathematical induction 

 

                                                                            for all integers n≥1 

SOLUTION: 

1.Basis step:   

                 For n = 1 

  L.H.S   

                        R.H.,S = (1+1)! - 1 = 2! - 1 

              = 2 -1 = 1 

                         Hence 

  

                            which proves the basis step. 

2.Inductive Step:        Suppose for any integer k ≥1 

 

                                                                            ………………………..(1) 

We need to prove that 

                 

                                                                                      ……………………(2) 

Consider LHS of (2)                                                                                                       Using (1) 

 

 

 

 

2 2 ( 2)

2 ( 1) 2 ( 1)

1 1
RHS of (2)

2( 1)

k k k k

k k k k

k

k

+ +
= =

+ +

+ +
= =

+

1
( !) ( 1)! 1

n

i
i i n

=
= + −∑

1
( !) (1)(1!) 1

n

i
i i

=
= = =∑

1

1
( !) (1 1)! 1

i
i i

=
= + −∑

1
( !) ( 1)! 1

k

i
i i k

=
= + −∑

1

1
( !) ( 1 1)! 1

k

i
i i k

+

=
= + + −∑

1

1 1
( !) ( !) ( 1)( 1)!

( 1)! 1 ( 1)( 1)!

( 1)! ( 1)( 1)! 1

[1 ( 1)]( 1)! 1

( 2)( 1)! 1

( 2)! 1

RHS of (2)

k k

i i
i i i i k k

k k k

k k k

k k

k k

k

+

= =
= + + +

= + − + + +

= + + + + −

= + + + −

= + + −

= + −

=

∑ ∑
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Hence the inductive step is also true.Accordingly, by mathematical induction, the given formula is 

true for all integers n ≥1. 

EXERCISE:     Use mathematical induction to prove the generalization of the following 

DeMorgan’s Law: 

 

 

where A1, A2, …, An are subsets of a universal set U and n≥2. 

SOLUTION: 

  Let P(n) be the given propositional function 

1.Basis Step:                 P(2) is true. 

  

         L.H.S of P(2) =                                             By DeMorgan’s Law 

  

2.Inductive Step:  

                 Assume that P(k) is true for some integer k ≥2; i.e., 

                                           

                                                                                    ………………….(1) 

where A1, A2, …, Ak are subsets of the universal set U. If Ak+1 is another set of U, then we need 

to show that 

                                         ………………..(2) 

Consider L.H.S of (2) 

  

 

 

                                                                     By DeMorgan’s Law 

 

Hence by mathematical induction, the given generalization of DeMorgan’s Law holds. 

1 1

n n

j jj j
A A

= =
=I U

2

1 21

1 2

2

1
RHS of (2)

jj

ji

A A A

A A

A P

=

=

=

=

= =

I I

U

U

1 1

k k

j jj j
A A

= =
=I U

1 1

1 1

k k

j jj j
A A

+ +

= =
=I U

( )

( )

1

11 1

11

11

1

1

R.H.S of (2)

k k

j j kj j

k

j kj

k

j kj

k

jj

A A A

A A

A A

A

+

+= =

+=

+=

+

=

=

 
=  
 

=

=

=

I

U

U

I I

I

U

U
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MATHEMATICAL INDUCTION FOR DIVISIBILITY PROBLEMS AND 

INEQUALITY PROBLEMS 

DIVISIBILITY: 

               Let n and d be integers and d ≠ 0. Then n is divisible by d or d divides n   written d|n. iff 

n = d·k for some integer k. 

Alternatively, we say that  n is a multiple of d,   d is a divisor of n , d is a factor of n  

Thus d|n ⇔ ∃ an integer k such that n = d·k 

EXERCISE: 

                     Use mathematical induction to prove that n
3
 - n is divisible by 3 whenever n is a positive 

integer. 

SOLUTION: 

1. Basis Step: 

            For n = 1 

       n
3
 - n = 1

3
 - 1 = 1 - 1 = 0 

which is clearly divisible by 3, since 0 = 0·3 

Therefore, the given statement is true for n = 1. 

2.Inductive Step:   

                      Suppose that the statement is true for n = k, i.e., k
3
-k is divisible by 3 for all n ∈Z+ 

Then  

  k
3
-k = 3·q…………………….(1) 

for some q ∈Z 

We need to prove that (k+1)
3
 - (k+1) is divisible by 3.  

Now 

(k+1)
 3
 - (k+1) = (k

3
 + 3k

2
 + 3k + 1) - (k + 1) 

  = k
3
 + 3k

2
 + 2k 

  = (k
3
-k) + 3k

2
 + 2k + k 
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  = (k
3
 - k) + 3k

2
 + 3k  

  = 3·q + 3·(k
2
 + k)  using(1) 

  = 3[q+k
2
 + k] 

⇒  (k+1)
3
 - (k+1) is divisible by 3. 

Hence by mathematical induction n
3
- n is divisible by 3, whenever n is a positive integer. 

EXAMPLE: 

                     Use mathematical induction to prove that for all integers n≥1, 

 2
2n

-1 is divisible by 3. 

SOLUTION: 

  Let P(n): 2
2n

 -1 is divisible by 3. 

1.Basis Step:  

                P(1) is true 

           Now P(1): 2
2(1)

- 1 is divisible by 3. 

           Since 2
2(1)

- 1= 4 - 1 = 3 

which is divisible by 3. 

Hence P(1) is true. 

2.Inductive Step:  

    Suppose that P(k) is true. That is 2
2k

-1 is divisible by 3. Then, there 

exists an integer q such that 

      2
2k

 - 1 = 3·q …………………………(1) 

To prove P(k+1) is true, that is 2
2(k+1)

- 1 is divisible by 3. 

Now consider 

      2
2(k+1)

 - 1= 2
2k+2

 - 1 

         = 2
2k 

2
2
 - 1 

         = 2
2k

4 - 1 

         = 2
2k

(3+1) - 1 
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         =  2
2k

·3+(2
2k

 - 1) 

         =  2
2k

·3+3·q           [by using (1) ] 

         =3(2
2k

 + q) 

⇒ 2
2(k+1)

 - 1 is divisible by 3. 

Accordingly, by mathematical induction. 2
2n

- 1 is divisible by 3, for all integers n ≥ 1. 

EXERCISE: 

                     Use mathematical induction to show that the product of any two consecutive positive 

integers is divisible by 2. 

SOLUTION: 

           Let n and n + 1 be two consecutive integers. We need to prove that n(n+1) is divisible by 2. 

1.  Basis Step: For n = 1 

  n (n+1) = 1·(1+1) = 1·2 = 2 

which is clearly divisible by 2. 

2.  Inductive Step:   

      Suppose the given statement is true for n = k. That is 

k (k+1) is divisible by 2, for some k ∈ Z+ 

Then  k (k+1) = 2·q                      ………………….(1) q ∈ Z+ 

We must show that 

  (k+1)(k+1+1) is divisible by 2. 

Consider  (k+1)(k+1+1) = (k+1)(k+2) 

    = (k+1)k + (k+1)2 

= 2q + 2 (k+1)  using (1)               = 

2(q+k+1) 

Hence (k+1) (k+1+1) is also divisible by 2. 

Accordingly, by mathematical induction, the product of any two consecutive positive integers is divisible 

by 2. 
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EXERCISE: 

                     Prove by mathematical induction n
3
  - n is divisible by 6, for each integer     n ≥ 2. 

SOLUTION: 

1.Basis Step:          For n = 2 

          n
3
 - n = 2

3
- 2 = 8 - 2 = 6 

          which is clearly divisible by 6, since 6 = 1·6 

          Therefore, the given statement is true for n = 2. 

2.Inductive Step:   

                    Suppose that the statement is true for n = k, i.e., k
3
 - k is divisible by 6, for  all integers k ≥ 2. 

Then  

  k
3
 - k = 6·q……………(1)  for some q ∈ Z. 

We need to prove that  

 (k+1)
 3
- (k+1) is divisible by 6 

Now     (k+1)
 3
- (k+1) = (k

3
 + 3k

3
 + 3k + 1)-(k+1) 

   = k
3
 + 3k

3
 + 2k 

   = (k
3
 - k) + (3k

3
 + 2k + k) 

   = (k
3
 - k) + 3k

3
 + 3k  Using (1) 

   = 6·q + 3k (k+1)………………..(2)  

Since k is an integer, so k(k+1) being the product of two consecutive integers is an even number. 

 Let k(k+1) = 2r  r ∈ Z 

Now equation (2) can be rewritten as: 

 (k+1)
 3
 - (k+1) = 6·q + 3·2 r 

   = 6q + 6r 

   = 6 (q+r)  q, r ∈ Z 

⇒ (k+1)
 3
 - (k+1) is divisible by 6. 

Hence, by mathematical induction, n
3
 - n is divisible by 6, for each integer n ≥ 2. 
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EXERCISE: 

                     Prove by mathematical induction. For any integer n ≥ 1, x
n
 - y

n
 is divisible by x - y, where x 

and y are any two integers with x ≠ y. 

SOLUTION: 

1.Basis Step:     For n = 1 

          x
n
 - y

n
 = x

1
– y

1
 = x - y 

                     which is clearly divisible by x – y. So, the statement is true for n = 1. 

2.Inductive Step:   

                    Suppose the statement is true for n = k, i.e., 

 x
k
 - y

k
 is divisible by x – y……………………(1) 

We need to prove that x
k+1

- y
k+1

is divisible by x - y 

Now  

         x
k+1

- y
 k+1

 = x
k
·x - y

k
·y 

   = x
k
·x - x·y

k
 + x·y

k
 - y

k
·y    (introducing x.y

k
) 

   = (x
k
 - y

k
)·x + y

k
· (x-y) 

The first term on R.H.S=(x
k
 - y

k
) is divisible by x - y by inductive hypothesis (1).  

The second term contains a factor (x-y) so is also divisible by x - y. 

Thus x
 k+1

- y
 k+1 

is divisible by x - y. Hence, by mathematical induction x
n
 - y

n
 is divisible by x - y for any 

integer n ≥1. 

PROVING AN INEQUALITY: 

Use mathematical induction to prove that for all integers n ≥ 3. 

  2n + 1 < 2
n
 

SOLUTION:    

1.Basis Step:          For n = 3 

                     L.H.S= 2(3) + 1 = 6 + 1 = 7 

                     R.H.S = 2
3
 = 8 

Since 7 < 8, so the statement is true for n = 3. 
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2.Inductive Step:   

                       Suppose the statement is true for n =k, i.e., 

                  2k + 1 < 2
k
…………………(1) k ≥ 3 

We need to show that the statement is true for n = k+1,  

i.e.; 2(k+1) + 1 < 2
 k+1

…………..(2) 

Consider L.H.S of (2)  

                                    = 2 (k+1) + 1 

   = 2k + 2 + 1 

   = (2k + 1) + 2 

   < 2
 k
 + 2  using (1) 

   < 2
k
  + 2

k
   (since 2 <2

 k
   for k ≥ 3) 

   < 2·2
k
  = 2

k+1
 

Thus       2(k+1)+1 < 2k+1   (proved) 

EXERCISE: 

                      Show by mathematical induction 

 1 + n x ≤ (1+x)
n
  

for all real numbers x > - 1 and integers n ≥ 2 

SOLUTION: 

1.  Basis Step: 

            For n = 2 

                       L.H.S = 1 + (2) x= 1 + 2x 

                       RHS  = (1 + x)
2
  = 1 + 2x + x

 2
  > 1 + 2x  (x

 2
 > 0) 

⇒ statement is true for n = 2. 

2.Inductive Step:   

                 Suppose the statement is true for n = k.  

 That is,  for k ≥ 2, 1 + k x ≤ (1 + x)
k
………………..(1) 
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We want to show that the statement is also true for n = k + 1 i.e., 

 1 + (k + 1)x ≤ (1 + x)
 k+1

  

Since x > - 1, therefore 1 + x > 0. 

Multiplying both sides of (1) by (1+x) we get 

(1+x)(1+x)
k  

≥ (1 + x) (1 + kx) 

         = 1 + kx + x + kx
2
 

         = 1 + (k + 1) x + kx
2
 

but 

        

so  

 (1+x)(1+x)
k
 ≥ 1 + (k + 1) x 

Thus 1 + (k+1) x ≤ (1+x)
 k+1

. Hence by mathematical induction, the inequality is true. 

PROVING A PROPERTY OF A SEQUENCE: 

Define a sequence a1, a2,a3, … as follows: 

 a1 = 2 

 ak = 5ak-1 for all integers k ≥ 2     …………….(1) 

Use mathematical induction to show that the terms of the sequence satisfy the formula. 

 an = 2·5
n-1

 for all integers n ≥ 1 

SOLUTION: 

1.Basis Step: 

          For n = 1, the formula gives 

          a1 = 2·5
1-1

 = 2·5
0
 = 2·1 = 2 

which confirms the definition of the sequence. Hence, the formula is true for n = 1. 

2.Inductive Step:   

               Suppose, that the formula is true for n = k, i.e.,  

          ak = 2·5
k-1

    for some integer k ≥1 

2

2

1, so 0

& 2, so 0

x x

k kx

 > − ≥


≥ ≥
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We show that the statement is also true for n = k + 1. i.e., 

         ak+1= 2·5
 k+1-1

 = 2·5
 k
 

Now   

          a k+1= 5·ak+1-1 [by definition of a1, a2, a3 …  or  by putting k+1 in (1)] 

      = 5·ak 

      = 5·(2·5
k-1

)  by inductive hypothesis 

      = 2·(5·5
 k-1

) 

     = 2·5
 k+1-1

 

     = 2·5
k
 

which was required. 

EXERCISE: 

         A sequence d1, d2, d3, … is defined by letting d1 = 2 and   

 

for all integers k ≥ 2. Show that                  for all integers n ≥ 1, using mathematical induction. 

SOLUTION: 

1.Basis Step:  

          For n = 1, the formula          ; n ≥1 gives 

 

 

  

which agrees with the definition of the sequence. 

2.Inductive Step:   

                    Suppose, the formula is true for n=k. i.e.,            

                             

                              for some integer k ≥ 1……………(1) 

 

1k
k

d
d

k

−=

2

!
n

d
n

=

1

2 2
2

1! 1
d = = =

2

!
n

d
n

=

2

!
k

d
k

=
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We must show that 

 

  

Now, by the definition of the sequence. 

 

  

 

 

                                                                using (1) 

Hence the formula is also true for n = k + 1. Accordingly, the given formula defines all the terms of the 

sequence recursively. 

EXERCISE: 

                    Prove by mathematical induction that 

 

 

Whenever n is a positive integer greater than 1. 

SOLUTION: 

1. Basis Step: for n = 2 

L.H.S  

 

 

R.H.S 

Clearly LHS < RHS 

Hence the statement is true for n = 2. 

2.Inductive Step:  

                      Suppose that the statement is true for some integers k > 1, i.e.; 

                                            (1) 

1

2

( 1)!
k

d
k

+
=

+

( 1) 1

1

1

( 1) ( 1)

1 2

( 1) !

2

( 1)!

k

k k

d
d d

k k

k k

k

+ −

+
= =

+ +

=
+

=
+

2

1 1 1 1
1 2

4 9 n n
+ + + + < −L

1 5
1 1.25

4 4

1 3
2 1.5

2 2

= + = =

= − = =

2

1 1 1 1
1 2

4 9 k k
+ + + + < −L

1sin k
k

d
u g d

k

−=
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We need to show that the statement is true for n = k + 1. That is  

 

                                    (2) 

Consider the L.H. S of (2) 

 

   

 

 

 

We need to prove that 

 

 

 

 

 

 

 

 

 

Definition If a proposition P(n) is true for a positive odd/even integer s and that P(k) is true 

implies P(k+2) is also true, then P(n) is true for all positive odd/even integers n ≥ s. 

 

 

 

 

2

1 1 1 1
1 2

4 9 ( 1) 1k k
+ + + + < −

+ +
L

2

1 1 1
1

4 9 ( 1)k
+ + + + =

+
L

2 2

1 1 1 1
1

4 9 ( 1)k k
+ + + + +

+
L

( )
2

2

1 1
2

1

1 1
2

( 1)

k k

k k

 
< − + 
  +

 
= − − 

+ 

2

2

2

2

2

1 1 1
2 2

( 1) 1

1 1 1
or

( 1) 1

1 1 1
or

( 1) 1

1 1 1
or

1 ( 1)

1 1 1
Now

1 ( 1)

1 1
    

( 1) ( 1)

k k k

k k k

k k k

k k k

k k

k k k k

k k k

 
− − ≤ − 

+ + 

 
− − ≤ − 

+ + 

− ≥
+ +

− ≥
+ +

+ −
− =

+ +

= >
+ +



 

                                                Properties of Integers  41 

 

  10 CS34                                                 Dr. V. Lokesha  2012 

Assignments: 

Problem 1 Prove, by induction, that 

  
nnnnn 2

1

12

1
...

4

1

3

1

2

1
1

2

1
...

2

1

1

1
−

−
++−+−=++

+
+

+
 

  for all positive integers n. 

Problem 2 Given a sequence KK ,,,, 21 nuuu  such that 11 =u  and 31 +=
−nn uu , ( )2≥n . 

  Show that 23 −= nun , for all positive integers n . 

Problem 3 Prove, by induction, that n(n
2 

+ 5) is divisible by 6 for all positive integers n. 

Problem 4 Prove, by mathematical induction, that nn 25 −  is divisible by 21 for all positive 

even integers n. 

Problem 5 Prove, by mathematical induction, that  nnn 235 −− is divisible by 30 for all 

positive odd integers n greater than 1.    

Problem 6 A sequence of real numbers KK ,,,, 10 naaa  is defined by 

   7,1 10 == aa  and 034 12 =+−
++ nnn aaa  for K,2,1,0=n  

  Prove, by induction, that 23 1
−=

+n

na  for all non-negative integers n . 
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Solution: 

 

 

 

 

 

 

 

 

0 1

1 1

2 1 0

( ) . 0 , 1

T h e  

d e f i n e d  r e c u r s i v e l y  b y

  a n d

f o r  n 2 .

E v a l u a t e    t

F i b o n a c c i  n u m b s

o   

e r

n n n

i F F

F F F

F F

− +− +− +− +

= == == == =

= + ≥= + ≥= + ≥= + ≥

1 1

1 1

( ) . 7 , 2 1

( ) . 4 ,

n

( i ) .B y  r e p e a te d  u s e  o f  th e  g iv e n  r e c u r s iv e  d e fn ,  w e  f in d  th a t

E x .  F in d  a n  e x p l ic i t  d e f in it io n  o f  th e  s e q u e n c e  d e f in e d

 r e c u r s iv e ly  b y

 fo r

        

 n 2 .

fo r

    a

 n 2 .

n n

n n

i a a a

i i a a a n

−−−−

−−−−

= = + ≥= = + ≥= = + ≥= = + ≥

= = + ≥= = + ≥= = + ≥= = + ≥

1 2

3

3 3

1

( 1 )

1

1

2 2

2[ 2 2 2

2

2

2

n -2 n -3

n -2 n -3

+ 1 =  2 ( + 1 )+ 1

                ( + 1 )+ 1 ]+ 1 = + 2 + 2 + 1

            . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

               + 2 + 2 + . . .+ 2 + 1 (G .P )

               + (2 + 2 + . .

n n

n n

n

n n

n

a a

a a

a

a

− −− −− −− −

− −− −− −− −

−−−−

− −− −− −− −

−−−−

====

====

====

====

1 17 ( 2 1 ) 8 ( 2 ) 1 .n -1

.+ 2 + 1 ) .

               )+ (2n n− −− −− −− −
= − = −= − = −= − = −= − = −

2 1 0 3 2 1

4 3 2 5 4 3

6 5 4 7 6 5

8 7 6 9 8 7

10 9 8

=1+0=1 =1+1=2

=2+1=3 =3+2=5

=5+3=8 =8+5=13

=13+8=21 =21+13=34

=34+21=55

F F F F F F

F F F F F F

F F F F F F

F F F F F F

F F F

= + = += + = += + = += + = +

= + = += + = += + = += + = +

= + = += + = += + = += + = +

= + = += + = += + = += + = +

= += += += +
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3. 

 

 

 

 

 

 

 

 

 

 

 

2

0 1 2 1

1

,IF , ,.... Fibonacci numbers, Prove that  for 

all positive integers n.

n

i n n

i

F F F F F XF
++++

====

====∑∑∑∑

1
2 2 2

i 0 1 1 2
i=1

1 2

  we first note that  F =F +F =0+1=1=1×1=F ×F

                                      because,F =F =1. 

    This verifies the re

Solution:

sult n=1.

∑∑∑∑

2

1

1

1
2 2 2 2

1 1 1

1 1

1 1

1 2 2 1

)

( )

Next, we assume the result n=k+1.

        consequently,

       =(

                  =

                  because 

T

k

i k k

i

k k

i i k k k k

i i

k k k

k k k k k

F F XF

F F F F F F

F F F

F F F F F

++++

====

++++

+ + ++ + ++ + ++ + +

= == == == =

+ ++ ++ ++ +

+ + + ++ + + ++ + + ++ + + +

====

= + × += + × += + × += + × +

× +× +× +× +

= × = ×= × = ×= × = ×= × = ×

∑∑∑∑

∑ ∑∑ ∑∑ ∑∑ ∑

his shows that the result is true for n=k+1.

0 1

1 2

2 1 0

2 , 1

T h e   a r e

d e f i n e d  r e c u r s i v e l y  b y

  a n d

f o r  n 2 .

E v a l u a t e   L  t o

L u c a s  n u

 L

m r s

 

b e

n n n

L L

L L L
− −− −− −− −

= == == == =

= + ≥= + ≥= + ≥= + ≥

2 1 0 3 2 1

4 3 2 5 4 3

6 5 4 7 6 5

8 7 6 9 8 7

10 9 8

: =1+2=3         L =3+1=4

        =4+3=7         =7+4=11

        =11+7=18      L =18+11=29

        =29+18=47    L =47+29=76

        =76

Sol L L L L L

L L L L L L

L L L L L

L L L L L

L L L

= + = += + = += + = += + = +

= + = += + = += + = += + = +

= + = += + = += + = += + = +

= + = += + = += + = += + = +

= += += += + +47=123

The sequence formed Lucas no. is Lucas sequence.
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2 4
5 0

i

i

I f  F  '  s  a r e  b e r s

 a n d  T h e  L ' s  a r e  L u c a s  

n u m b e r s  a r e  P r o v e  t h a t  

F i b o n a c c i

f o r  n

 n u

.

m

n n n
F L L

+ ++ ++ ++ +
= + ≥= + ≥= + ≥= + ≥

4 0 5 1

0 5 3

:

7 1 1 1 , 2

2 3

1 4 2

 n  =  0 ,  a n d  n  =  1

=  5  F ,   L = 5  F  S i n c e

= 2 ,   L = 1  ,  L a n  F

t h e s e  a r e  t r u e .

S o l F o r

L L L

L L d F

− −− −− −− −

= = = == = = == = = == = = =

m, k

0,0 m,k m,k

m,k m-1,k-1 m-1,k

For integers m and k, the ers a  are defined 

recursively as follows:

           a =1;a =0 for k m>0, a =0for k<0

           a =(m-k)a +(k+1)a for

Euleri

 0 k m-1

Deter

an

m

 

i

nu

ne the v

mb

≥≥≥≥

≤ ≤≤ ≤≤ ≤≤ ≤

m,kalues of a for1 m 5,0 k m-1.≤ ≤ ≤ ≤≤ ≤ ≤ ≤≤ ≤ ≤ ≤≤ ≤ ≤ ≤

5 1 4 3 1

4 3 1

( )

( )

 assume that the result is true for n = 0,1,...,k where k 1.

Then, we find that            

            = ( )

                            =( )+

              

k k k k k k

k k k k

We

L L L L L L

L L L L

+ + + + −+ + + + −+ + + + −+ + + + −

+ + −+ + −+ + −+ + −

≥≥≥≥

− + − +− + − +− + − +− + − +

− −− −− −− −

4 ( 1) 4 1

2 1 3

( )

5 5 5

              =( )+

                           

This shows that required result is true for n=k+1.

k k k k

k k k

L L L L

F F F

+ − + −+ − + −+ − + −+ − + −

+ + ++ + ++ + ++ + +

− −− −− −− −

= + == + == + == + =

1 , 1 1 ,

0 , 1 0 ,0

:

( ) ( 1 ) . . . . ( 1 )

(1 0 ) ( 0 1 ) 1

0 1

m ,k

1 ,0

0 , -1 0 ,0

   0 k m - 1 ,  w e  h a v e  b y  d e f in i t io n

a

 m  =  1 ,  t h is  e x p r e s s io n  h o ld s  f o r  k = 0 ,1 w e  g e t

a

B e c a u s e  a  a n d  a

 m  =  2 ,  t h is  e x p r

m k m k

S o l F o r

m k a k a

w h e n

a a

w h e n

− − −− − −− − −− − −

−−−−

≤ ≤≤ ≤≤ ≤≤ ≤

= − + += − + += − + += − + +

= − + + == − + + == − + + == − + + =

= == == == =

1 , 1 1 ,0

1 ,0 1 ,1

( 2 0 ) ( 0 1 ) 1

( 2 1 ) (1 1 ) 1 0 1

2 , 0

2 , 1

e s s io n  h o ld s  f o r  k = 0 ,1 w e  g e t

a

a

a a

a a

−−−−
= − + + == − + + == − + + == − + + =

= − + + = + == − + + = + == − + + = + == − + + = + =
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Well formed formulas 

In the study of logic, the following are called well-formed formulas 

• Components of a compound proposition.  

• The tautology T0  

• The Contradiction F0  

•  ̃¬̃Where P and Q are themselves well formed formulas.  

1 0 ,

0 ,

2

m , n  

0 , n

m , 0 m - 1 , 1

m , n m - 1 , p m ,  n - 1

1 , n

T h e  r s  A

d e f i n e d  r e c u r s i v e l y  f o r  m ,  n

a s  f o l l o w s :

A f o r  

A

A c k e r m

A  f o r  m

A A  w h e r e  p = A  f o r  m , n > 0

p r o v e  t h a t  A  f o r  a l l  n N

a n n ' s  n u b e

.

m a r e

N

n n

n

∈∈∈∈

= + ≥= + ≥= + ≥= + ≥

= ≥= ≥= ≥= ≥

====

= + ∈= + ∈= + ∈= + ∈

2,1 2,2

2,0 2,1

2, 1 2,0

(3 2) (2 1) 1 0 1(

(3 1) (1 1) 2(1) 2(1) 4

(3 0) (0 1) 0 1 1

,

1, 11,

3,2

3,1

3,0

4,3 4,2 4,1

 m = 3, this expression holds for k=2,1,0 we get

a using definition)

a

a

a a a

when

a a

a a

a a

similaly weget

−−−−

= − + + = + == − + + = + == − + + = + == − + + = + =

= − + + = + == − + + = + == − + + = + == − + + = + =

= − + + = + == − + + = + == − + + = + == − + + = + =

= == == == =

5,0

11, 1,

1, 26, 66, 26, 1.

4,0

5,4 5,3 5,2 5,1

a

a a a a a

= == == == =

= = = = == = = = == = = = == = = = =

2

1,0 0,1

1,k

1,k+1 0,

  we first note that A =A =1+1=2=0+2(II & I steps of Def)

This verifies the result n=0.

We assume that the result is true for n=k 0

we asume A  for k 0. Then we find

             A A

Soln:

k

≥≥≥≥

= + ≥= + ≥= + ≥= + ≥

==== ( )

( 2) 1 ( 1) 2( 2).

p 1,k

0,k+2 1,k

 where p=A

                  A  p=A

This shows that the required result is true for n=k+1.

IIIstep

k k because k= = + + = + + = += = + + = + + = += = + + = + + = += = + + = + + = +
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Problem :  

If p, q , r are primitive statements, prove that the following are well formed formulas. 

1. (p ν q) → T0 Λ(¬r) ,      2. (p Λ (¬r)) ↔ (r ν F0) 

Proof :  

(1). Since p and q are primitive statements, p ν q is a well formed formula. Also, since r is a primitive 

statement, ¬r is a well-formed formula. Consequently T0 Λ(¬r) is a well-formed formula. 

Finally, since p ν q is a well-formed formula and T0Λ(¬r) is a well formed formula, so is (p νq)→ T0 

Λ(¬r)  

 

(2), since q is a primitive statement, ¬q is a well formed formula. Since p is a primitive statement,           

pΛ(¬r) is a Well formed formula. Also, since  r is a primitive statement r ν F0  is a well formed formula.  

Consequently ¬(r ν F0)is a well formed formula. 

 Finally, since p Λ (¬r) is a well formed formula and ¬(r ν F0) is a well formed formula, so is                  

(p Λ (¬r)) ↔ (r ν F0)  

Another example: 

The well-formed formulae of variables, numerals and operators from {+, -, *, /, ^} are defined by: 

x is a well-formed formula if x is a numeral or variable. 

(f + g), (f – g), (f * g), (f / g), (f ^ g) are well-formed formulae if f and g are. 

An algorithm is called recursive if it solves a problem by reducing it to an instance of the same problem 

with smaller input. 

With this definition, we can construct formulae such as: 

(x – y) 

((z / 3) – y) 

((z / 3) – (6 + 5)) 

((z / (2 * 4)) – (6 + 5)) 

Example I: Recursive Euclidean Algorithm 

An algorithm is called recursive if it solves a problem by reducing it to an instance of the same 

problem with smaller input. 

Example I: Recursive Euclidean Algorithm 
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procedure gcd(a, b: nonnegative integers with a < b) 

if a = 0 then gcd(a, b) := b 

else gcd(a, b) := gcd(b mod a, a) 

Example II: Recursive Fibonacci Algorithm 

procedure fibo(n: nonnegative integer) 

if n = 0 then fibo(0) := 0 

else if n = 1 then fibo(1) := 1 

else fibo(n) := fibo(n – 1) + fibo(n – 2) 

procedure iterative_fibo(n: nonnegative integer) 

f n = 0 then y := 0 

else 

begin 

x := 0 

y := 1 

for i := 1 to n-1 

begin 

z := x + y 

x : = y 

y := z 

end 

end   {y is the n-th Fibonacci number} 

For every recursive algorithm, there is an equivalent iterative algorithm. 

Recursive algorithms are often shorter, more elegant, and easier to understand than their iterative 

counterparts. 

However, iterative algorithms are usually more efficient in their use of space and time 

Recursive Definitions-Applications 

The usual way of defining a set is to specify some property satisfied by all its elements. 
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For example, an integer may have the property of being even. And so we can talk about the set of all 

multiples of 2 (even numbers) : 

   {n | n = 2k for some k ∈ ℤ} 

The set is defined as the collection of all elements in our universal set that have a certain property. 

The drawback of this kind of definition is that it does not give any information about how to find, or 

build, the elements of the set.  

We will see how to generate the elements of a set. This is called definition by recursion.  

• In Chemistry, every chemical element is a different kind of atom, with a different number and 

arrangement of electrons. Chemical compounds consist of combinations of elements.  

• Not every combination is possible — the allowable combinations depend on the arrangements of 

electrons in the atoms. 

• This is a nonmathematical example of the pattern that we find in all recursive definitions: 

we have one or more basic building blocks, or atoms, andwe have one or more permissible ways to  

combine the atoms in order to generate  more complex things. 

The Set of Even Integers 

• To give a recursive definition of the set of even integers, think about how to generate even 

integers from the ‘simplest’ integer, namely 0. 

• Even integers are either positive or negative. The positive even integers can be generated by 

adding 2 to 0 one or more times to get 2,4,6,8,… 

• The negative even integers can be generated by subtracting 2 from 0.  

• So the basic strategy of our recursive definition of the set of even integers consists of two steps 

  1. to specify an atom, namely 0, and 

  2. to say how members of the set are to be  generated from the atom 0.  

namely if k is the atom or some number already generated from the atom, then k + 2 and k - 2 are 

allowable numbers to generate. 

The Factorial Function 

• Let ℤ
+
 = {0, 1, 2, 3, …} be the set of nonnegative  integers. Let f : ℤ 

+
 ⟶ ℤ 

+
 be the factorial 

function. Then 

• f(0) = 1 and 

• f(n + 1) = (n + 1) × f(n).  
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• The factorial function is an example of a function having a recursive definition.  

• The basic building block of the factorial function tells us that on the input 0 the function outputs 

f(0) = 1.  

• More generally, the function can use the input  n ∈ ℤ 
+
, to calculate the output for the next 

input,  n + 1 ∈ ℤ 
+
, and should set  f(n + 1) = (n + 1) × f(n). 

• This tells us how to work out, say, f(3). We know  

 f(0) = 1, so f(3) = 3 × f(2) =3 × 2 × f(1) = 3 × 2 ×1 × f(0)= 6.  

• Our definition gave us the atom from which to  start, and told us how to generate the rest of the 

function. 

The Parenthesis Language: 

• A set of strings over an alphabet is called a formal language. The most important examples are 

programming languages for computers.  

• Here is a very simple (and not very useful)  example of a formal language over the alphabet   A = {(, 

)}. We call the language P for Parenthesis. 

• As atom take the empty string λ. Thus λ ∈ P. Next, if x is already a string in P, then (x) ∈ P also. 

• The strings of the language are 

   λ, (), (()), ((())),… 

• In other words, we generate longer strings by adding more parentheses on either side. 

• Our definition has again started by giving a building block and continued by describing how to use 

previously generated things to build new things. So it is a recursive definition. 

There are actually two parts to every recursive definition: 

  1. We must give one or more atoms as a starting point. 

  2. We must say how previously generated items can be used to build new items. 

We must keep in mind that : 

• The only items in the recursively generated set are those which can be built from the atoms in a 

finite number of steps.  

• Nothing else gets to be a member of the recursively defined set. 

Thus the binary numerals are : 

 1, 10, 11, 100, 101, 110, 111, 1000, 1001, 1010,… 
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of course, we know that the binary numeral 1 represents the number one, 10 represents two, 11 represents 

three, and so on…  

For example the binary numeral 1010 stands for the number that, in the usual decimal notation, would be 

calculated as 

   1 × 2
3
 + 0 × 2

2
 + 1 × 2

1
 + 0 × 2

0 
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